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the perfect radical, which is the intersection of the transfinite derived
series. We prove that each such radical Py generated by a srngle

I()(

that every variety of groups W determlnes a locahzatlon functor i
the nnmnrnnv category, which kiiis the radical //m; of the nmnamentaj

group while preserving homology with certain coefficients.
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However they have received less attention in the category of groups, Where
the fundamentals of radical theory were first 1nvest1gated by Kurosh; see [13

Radicals have been broadly studied in abelian categories; see e.g. ! . VL 1_!

:Hom(B,, K) — Hom(Aa, K) is bijective for all a. Under
if

® is a set, or also if each ¢, is surjective), every
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As we explain in Section 2, there is a b1Jectlve correspondence between
rad1cals and surjective localizations in the category of groups, and there

whose target is the trivial group (such localizations will be called reductions).
In particular the projection onto an arbitrary variety of groups determines
d1cal R and to thls rad1ca1 we can assoc1ate by standard methods an

Our motlvatlon comes from [1], where a universal locally free group F
was constructed Wlth the property that locahzatlon with respect to the ho-
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Furthermore, every radical R associated with a variety gives rise to a
locahzatlon functor in the homotopy category of CW—complexes When
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1dent1ty (i.e., a functor assigning to each group G a subgroup RG in such a
way that every homomorphism G — K induces RG — RK by restriction),
with the property that RG is normal in G and R(G/RG) = 1 for all groups G.

ohtly
ghtly

the terminology varies sl

Example 1.1 The best-known example of a (nonidempotent) radical is the
commutator subgroup RG = [G, G]. T idempotent examples are the per-
s

ect radical (i.e. p, where a group ( is called
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the largest nerf
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subgroup, where a group G is called J—perfect if the first mod p homology
group Hi(G;Z/p) is zero for p € J.

1 is closed under subgroups and cartesian products. The proof is the same
as the one given in [15, VI.1.2] for abelian categories. It follows that, if two
groups G and K satisfy RG = G and RK = 1, then Hom(G, K) is trivial.

RR*G = R>*G. Moreover, R*G is normal in G and it is contained in RG.

Proof. Let R™G be the product of all subgroups H of GG such that RH = H.
Then R*G is a quotient of the free product of all such subgroups H, and
this famlly of subgroups is closed under eonjugatlon Hence RR>*G = R*G
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in fact the largest 1dempotent radical which is a subfunctor of R. There is
another standard way of constructing R from R by transfinite induction.
Namely, if o is a successor ordinal, define R* = RR*™! with R = R, and
1f « is a limit ordlnal then let R* be the intersection of R” for all 6
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Proposition 1.3 FEvery family of groups C determines a radical R, by defin-
ing RG to be the intersection of the kernels of all epimorphisms f:G — C
where C' is in C.

radical R arises this way, by taking C to be the class of groups G such
that RG = 1.

There is another important source of radicals. Namely, the same argu-
ment as in [9, 2.2] proves the following.
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the left ad omt Then w l by deﬁnm R
the unit map G — ELG, for each group G.
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A full subcategory D of the category of groups is called reflective if the inclu-
sion £: D — G has a left adJomt L In thls case, for every group GG we have

\ hf\mf\mf\vnh1om IT' 25287832 1%H hr\mr\mr\vv\thmu
1iilJi

Is
Psiiidiii AF A VViiilii i 1iiiUiThd iiiUEAE 1iULIUIIUE Siisiiins

from
Proposition 1.4 that R is a radical. In fact, there is a b1Jectlve correspondence
between radicals and epireﬂections in the category of groups.

the subcategory D of all groups D which are orthogonal to Pa for all a, that
is, such that the induced map
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product ¢ of all homomorphisms in the family, and it follows by standard
methods that the orthogonal subcategory D is reflective. For further details
and applications to homotopy theory, see [1], [4], [5], [14]. If ¢ is a surjective
homomorphism, then the ¢-localization functor L, is an epireflection. In the
special case when ¢ is of the form A — 1 for some group A, the orthogonal
groups are called A-reduced. Thus, a group G is A-reduced if and only if
Hom(A, G) is trivial. In this case, the p-localization of a group G will be
called A reduction and denoted by G / /A It is the largest quotient of G
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However, there is a special situation where it can be proved that the subcat-

is injective. Since D is closed under subgroups and inverse limits, it follows
that G isin D. £

In the special case where the targets of all homomorphisms ¢,, are trivial,
the associated localization will be called a reduction. This terminology is
consistent with our previous use of the same word. The same arguments as
in [14, Theorem 2.7] lead to the following characterization.
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the class 0f L-local groups. Then L is an epzreﬂectwn if and only sz is
closed under subgroups, and L is a reduction if and only if D is closed under

that all such homomorphisms are L-equivalences it foliows that there is a
natural transformation L' — L. Conversely, let G be L'-local. Then we have
LRG = RG/ RRG =1 and this 1mphes that the homomorphlsm RG — 1
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that RG =1 and G is L-local. Thus we have proved that L' = L, as desired.



The kernel R of any reduction with respect to a class ¢,: A, — 1 can

he descrihed as a nnqqlh]v transfinite direct, ]1m1‘r as in [A Theorem 3. ’)]

Let W be the variety of groups defined by a set of words W. That is, W is a
set, of elements of the free group F ona countably infinite set of generators

arbitrary group G, the verbal subgroup W of G is the subgroup generated
by all the images of words in W under homomorphisms F,, — G.

the verbal buDQI‘OUD is a rd(llCdl which we denote D the same letter W. It

This radical Pyy is 1demD0tent Thus, we can conelder the reduction functor
assigning to each group G the quotient G/PyyG; cf. Theorem 2.3. We say
that a group F' generates the radlcal PW if G / / F G / PWG for all groups G

where m 1

._.
wn
jav)
=
)
T

he largest ubgroup



iy

up

m-powers of elements of H. We call this radlcal the Bumszde radical of ex-
ponent m. The Burnside radical of exponent 0 is the trivial subgroup and
the Burnside radical of exponent 1 is the whole group. Note that the Burn-
side radical of exponent m coincides with the radical generated by Z[1/m]

together with a commutator word ¢, in the sense that w is a law in a group G
if and only if the words 2™ and ¢ are both laws in G. (A commutator word is
any element of [Foo, F ] ) Thus glven a varlety W we can assume without

If a variety W is defined by commutator words only, then the W-perfect
radical is contained in the ordinary perfect radical. Indeed, the inclusion

descrlbed in Example 5.3 of 1].

Theorem 3.3 Let W be any variety of groups. Then there exists a locally
free, W—perfect group F such that, for all groups G, the radical PywG is




We shall construct a countable locally free group F}, for each sequence
n = (ny,ng,ng,...) of positive integers, and define F' to be the free product
of the groups F}, for all increasing sequences n. The group F}, is defined as
the colimit of a directed system (Fy, ., ¢,) of free groups and homomorphisms.
For r =20, the group Fn() is mﬁmte cychc with a generator xy. For r > 1,

Pr (xT<617”’75T;617”’76T;i17'"77;7‘))
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perfect Slnce every eplmorphlc image of a W—perfect group is W perfect
it follows tndt the image of every homomorphism F — G is contained in

that for every element r € PwG, there is an increasing sequence n and
a homomorphlsm F, — G whose image contains the element xz. To see
this, pick the minimum n; such that x can be written as a product of nq

anvy _n_rﬂ_pr\, r)nr‘] n]nnnoa leYare) unn]n f:lnnnmhnc
fed L g,

in
or equal to the lengths of th expressmns of these lements as p oducts of
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order 1llustrate how 1/1 is deﬁned suppose e. g that %= b ) (d e)
so that ny = 3. Then 1 sends x1(3, 1;1) = a, 21(3;2;1) — b x1(3 3;1) —c,
21(2;1;2) — d, 1(2; 2;2) — e, and it sends all the other generators xl(é, g; z)
of F,1 to 1. Then one proceeds similarly by choosing decompositions of a,

map [ A — B between (

l-;-]
~-
=

the induced map of function space

)

map( f, X ):map(B, X) — map(A, X)
M ~ = 101 LS R, ™. .1 ___ £ 3 a1 1 ar O
1\ a weak ll()lll()l()[)V (—‘(llllVrll("ll('(—' nacri lll?l.[) I daeverIriiries a 10callzaniorn 1urnc-

tor Ly in the homotopy category of CW-complexes; see [6]. Thus, for every
CW-complex X there is a map X — L;X which is homotopy initial among
maps from X into f local spaces

group generating the same radical). Since F is a direct limit of free groups, its
classifying space K (F, 1) is a homotopy colimit of wedges of circles and hence
it is two- d1mens1onal It then follows from [5 Theorem 2.1] that localization

m (LX) = Lym (X) for all spaces X,

where ¢ denotes the homomorphism F' — 1 induced by f on the fundamental
group; thus, the localization functor L, has the efect of dividing out the W-

for which the W-perfect radical of the fundamental group is trivial. ‘The
followmg theorem ensures that such locahzatlons are not tr1v1al themselves
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I K(F 1) o L* Then for each space X the natuml map X — LfX kzlls
the W-perfect radical from the fundamental group of X, and it induces an
isomorphism in homology with coefficients in Z/m.

map X — L;X is an integral homology equivalence for all spaces X. If
m > 2, then the abelianization of F' is a group A such that A = mA; that
is, A is p—lelSlbl for all prlmes P d1v1d1ng m. Hence H 1(F Z / m) =0 and

S-com : " homology wit : : ,

known see [3, VIL.6 ] or [10] These occur in our framewor k, up to homotopy,

by choosing the variety defined by the words 2™ and [z, y]; what they kill is
is

the J- perfect radlcal of the fundamental group, Where J he set of prlme d1—

910 L ,
ogy Wlth d m coefﬁments ThlS locahzatlon does not alter for example
spaces whose fundamental group is a finite perfect group of exponent m.
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